Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing.

نویسندگان

  • M A Lee-Kirsch
  • F Gaudet
  • M C Cardoso
  • K Lindpaintner
چکیده

The aspartyl protease renin catalyzes the initial and rate-limiting step in the formation of the biologically active peptide angiotensin II. It is mainly synthesized in the kidney as a preprohormone and secreted via constitutive and regulated pathways. We identified a novel transcript of the rat renin gene, renin b, characterized by the presence of an alternative first exon (exon 1b) that is spliced to exon 2 of the known transcript, termed renin a. We demonstrated that renin b is exclusively expressed in the brain. In contrast, renin a was not expressed in the brain. Using primer extension assays, we mapped the transcriptional start site of this novel mRNA within intron 1 of the rat genomic sequence, suggesting the presence of a brain-specific promoter within intron 1. The presence of a brain-specific renin isoform is evolutionally conserved, as demonstrated by the finding of renin b isoforms in mice and humans. The predicted protein renin b lacks the prefragment as well as a significant portion of the profragment and is therefore predicted not to be a secreted protein, unlike the classically described isoform renin a. As shown by in vitro translation of full-length renin b mRNA in the presence of microsomal membranes, renin b was not targeted into the endoplasmatic reticulum and remained intracellularly in transiently transfected AtT-20 cells. These findings provide evidence for a novel pathway of intracellular angiotensin generation that occurs exclusively in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation.

We have reported that mice transgenic for 140- and 160-kb P1 phage artificial chromosomes (PACs) containing the human renin gene express the gene in a highly tissue-restricted and regulated manner. Herein, we demonstrate that the transgene is also expressed appropriately throughout development. In the course of this investigation, we identified the existence of three transcriptional isoforms of...

متن کامل

Diversity in TAF Proteomics: Consequences for Cellular Differentiation and Migration

Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation,...

متن کامل

Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini.

Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA reg...

متن کامل

Entropy Measures Quantify Global Splicing Disorders in Cancer

Most mammalian genes are able to express several splice variants in a phenomenon known as alternative splicing. Serious alterations of alternative splicing occur in cancer tissues, leading to expression of multiple aberrant splice forms. Most studies of alternative splicing defects have focused on the identification of cancer-specific splice variants as potential therapeutic targets. Here, we e...

متن کامل

Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues

Most human genes generate multiple transcript isoforms. The differential expression of these isoforms can help specify cell types. Diverse transcript isoforms arise from the use of alternative transcription start sites, polyadenylation sites and splice sites; however, the relative contribution of these processes to isoform diversity in normal human physiology is unclear. To address this questio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 1999